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bstract

Theories of the neurobiological basis of Attention-Deficit/Hyperactivity Disorder (ADHD) have largely focused on dysregulation of central
opaminergic function. However, other neurotransmitter systems may be implicated in specific cognitive deficits in ADHD. Interest in the potential
nvolvement of nicotinic cholinergic systems in ADHD has arisen in part from the observation that adolescents and adults with ADHD smoke
igarettes at significantly higher rates than people without this disorder. In addition, several studies report that nicotine alleviates ADHD symptoms,
nd recent neuro-genetics studies indicate that cholinergic systems may be altered in persons with ADHD. In this review, we describe the evidence
or a role of central nicotinic cholinergic systems in cognitive deficits in ADHD. We also propose mechanisms by which alterations in cholinergic

unction may contribute directly and/or indirectly to these deficits. Finally, we identify specific paradigms and models to guide future investigations
nto the specific involvement of nicotinic cholinergic systems in ADHD, possibly leading to the development of more effective pharmacotherapies
or ADHD.

2006 Published by Elsevier B.V.
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1. Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is the
most common childhood psychological disorder, affecting
approximately 3–5% of children and persisting into adoles-
cence and adulthood for an estimated 60–80% of people who are
affected [1]. Research on the neurobiological basis of ADHD has
traditionally focused on dysregulation of central dopaminergic
function, and psychostimulant treatment has been shown to have
positive effects on ADHD symptoms [55,96]. However, ADHD
is a complex disorder that is characterized by several hetero-
geneous symptom clusters. Given this complexity it is unlikely
that ADHD is related to a single neurotransmitter abnormality
(dopamine) and rather more likely that multiple neurotransmit-
ter systems are involved in this disorder. Indeed, it has recently
been proposed [28] that non-catecholaminergic neurotransmitter
systems may be involved in the cognitive symptoms of ADHD,
but there are few reports that go on to identify or address the
specific involvement of other transmitter systems.

Here we present evidence for a specific role of central nico-
tinic cholinergic systems in the cognitive deficits of ADHD.
After first reviewing current theories regarding the neurochem-
istry of ADHD, we describe the precipitous use of use nicotine
by persons with ADHD and the effects of nicotine on the behav-
ioral manifestations of the disorder. We then present evidence
to support the hypothesis that cholinergic alterations may con-
tribute to several specific cognitive deficits in ADHD including
impairments in behavioral inhibition, delay aversion, sustained
attention, and working memory. These cognitive deficits are cur-
rently thought to give rise to the overt behavioral symptoms (i.e.,
hyperactivity, inattentiveness, impulsivity) of ADHD as mea-
sured using behavior checklists and observations (Barkley [6,7],
Sonuga-Barke et al. [99]). We thus further the notion that per-
sons with ADHD may use nicotine to self-medicate and alleviate
cognitive deficits that underlie ADHD symptoms by describing
how nicotine may exert its beneficial effects. Finally we describe
the neural mechanisms that may mediate the effects of nicotine
on cognitive impairment in ADHD, as well as therapeutic impli-
cations.

2. Neurochemistry of ADHD

Research on the neurochemistry of ADHD indicates that
there is not a single neurotransmitter abnormality that is respon-
sible for the symptoms of ADHD [123]. Dopamine and nore-
pinephrine have been the most well studied neurotransmitters,
largely due to the positive therapeutic effects of psychostim-

ulants on ADHD symptoms. It has been suggested that the
balance between these two systems may be altered and result
in the symptoms of ADHD [97]. Recent neuro-imaging stud-
ies have revealed anatomical changes in dopamine-rich brain
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egions such as the globus pallidus and frontal cortex in chil-
ren with ADHD [19]. Subjects with ADHD have also been
hown to have reduced frontal and striatal activity during rele-
ant cognitive tasks [25,27,43], which may be related to reduced
opaminergic tone. Other lines of evidence indicate that reduced
oradrenergic activity, altered dopamine re-uptake, and changes
n the dopamine D4 receptor are often observed in persons with
DHD [22,44].
Current treatments for ADHD consist mainly of psychos-

imulants (e.g. methylphenidate), which are thought to exert
heir effects by increasing both dopaminergic and noradrenergic
eurotransmission [63]. Stimulant medications have been well
emonstrated to significantly reduce ADHD symptoms mea-
ured by both parent and teacher ratings. These effects include
eductions on ratings of activity levels, hyperactivity/impulsivity
nd inattention ([101–103], MTA research group). In addition,
sychostimulant treatment has been shown to improve “non-
DHD” symptoms such as teacher reported social skills [68],

nd aggressive behavior in the school setting [103] contributing
o improvements in classroom performance [68,101,102].

The exact mechanisms by which psychostimulants produce
mprovements in ADHD remain unclear. It is also not entirely
ertain which dopaminergic system(s) are involved or how
hey regulate behavior. Moreover, psychostimulants have greater
ffects on overt behavioral features of the disorder as measured
hrough observer-rated behavior checklists than on cognitive
omains measured in the laboratory [101]. The reduction of
otor activity associated with administration of psychostim-

lants also follows a different dose–response curve than the
ffects on cognition (i.e., sustained attention) [76,97]. Further-
ore, studies in normal volunteers indicate that psychostimu-

ants improve performance on a broad array of tasks and that
hese improvements are not specific to individuals with ADHD
84].

These findings have prompted the proposition that other, non-
atecholaminergic, neurotransmitter systems may be involved
n the cognitive symptoms of ADHD [27]. A few studies have
egun to address specific nicotinic cholinergic abnormalities in
DHD. In addition, converging evidence regarding the propen-

ity for persons with ADHD to use and abuse nicotine-containing
roducts, along with the evidence that nicotine alleviates symp-
oms and specific cognitive deficits in ADHD, suggests that
entral nicotinic cholinergic systems may have an important role
n the cognitive impairments observed in ADHD.

. Nicotine and ADHD
202 A.S. Potter et al. / Behavioural Brain Research 175 (2006) 201–211
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.1. Cigarette smoking and ADHD

A major impetus for improving the understanding of the basis
f ADHD involves the precipitous use and abuse of nicotine by
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ersons with ADHD. Adults and adolescents who are diagnosed
ith ADHD smoke at significantly higher rates than compa-

able people in a community sample [75]. In addition, adult
ales with ADHD also have lower quit ratios (percentage of

ver-smokers who are ex-smokers) than the general population
23% versus 51.6%). Pomerleau et al. [75] identified a relation-
hip between current smoking status and retrospective reports
f ADHD symptoms, with current smokers recalling a greater
umber and greater severity of ADHD symptoms in childhood.
prospective study of tobacco smoking [45] found that by age

7, 46% of adolescents with ADHD were smoking cigarettes
aily compared with 24% of age-mate controls. This finding
ontinued into adulthood where 35% of adult subjects with
DHD were smokers as compared to 16% of age-mate controls.
ikewise, a recent longitudinal study of predictors of adolescent
moking found a diagnosis of ADHD to be associated with ear-
ier first use of cigarettes, earlier progression to daily smoking,
nd earlier use of illicit drugs [56].

ADHD has high rates of comorbidity with Conduct Disor-
er (CD), Oppositional Defiant Disorder, anxiety disorders, and
epression [2,3,12,13,104], making it difficult to discern the
rue relationship between ADHD and substance abuse. How-
ver, Disney et al. [24] reported that while ADHD itself has
ittle effect on most substance use outcomes independent of
he effects of CD, nicotine dependence is an exception. Thus,
DHD may have a direction relationship with nicotine depen-
ence. This notion is supported by Milberger et al. [66] who
ound a prospective relationship between ADHD and cigarette
moking in boys after controlling for the effects of CD. In addi-
ion, Molina and Pelham [67] and Burke et al. [17] both found
hat child inattention symptoms prospectively predicted sub-
tance use outcomes when CD was controlled for. Together,
hese findings indicate that persons with ADHD may be partic-
larly susceptible to nicotine abuse and support the notion that
icotine may be used to alleviate specific symptoms of ADHD
51,116].

.2. Effects of nicotine on overt behavioral symptoms of
DHD

Recent investigations of nicotinic agents in ADHD have
hown promising symptomatic improvement in both adolescents
nd adults with ADHD [53,77,78,95,116,118]. Levin et al. [53]
xamined the acute effects of transdermal nicotine in adults with
DHD (both smokers and non-smokers) and found significant

mprovements in self-rated vigor, concentration, and observer-
ated illness severity (CGI) in both subject groups. In addition,
here were improvements on speed of responding for both the
mokers and non-smokers and a reduction in variability of reac-
ion time for the smokers [53]. In a second study [49], the effects
f chronic (4 weeks) nicotine administration were compared to
reatment with methylphenidate, placebo, and a combination of
icotine and methylphenidate in adults with ADHD. Nicotine

ignificantly reduced clinician ratings of severity of symptoms
nd decreased self-reported symptoms of depression as well
s variability of reaction times on a continuous performance
ask.

4
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Other studies have examined a novel cholinergic channel acti-
ator (nicotinic agonist) ABT-418 in adults with ADHD using
cross-over design with each subject receiving 2 double-blind
-week treatment periods with placebo and ABT-418 [116]. Sig-
ificant improvements in subjective ratings of attentiveness and
bserver-rated illness severity on a clinical global impressions
cale were reported following treatment with ABT-418. A newer,
ore selective agonist acting at the �4�2 nicotinic receptor sub-

ype has also recently been tested in adults with ADHD [118].
BT-089 was administered to adults for 2 weeks in a multi-
ose randomized, double-blind, placebo-controlled trial and was
uperior to placebo based on improvements in symptom scores,
DHD index hyperactive/impulsive ratings, and clinical global

mpression. Studies such as these provide evidence that stim-
lation of nicotinic cholinergic systems can alleviate some of
he overt behavioral symptoms of ADHD as measured through
elf-report and observer ratings. However, they do not specifi-
ally address the cognitive domains through which nicotine may
ffect persons with ADHD.

. Involvement of cholinergic systems in the cognitive
mpairments in ADHD

There are several means by which stimulation of central
holinergic systems may produce beneficial effects on the cog-
itive deficits associated with ADHD. For example, it is now
idely accepted that processes such as sustained attention and
orking memory are regulated by central cholinergic systems

87,88]. Indeed, ADHD has historically been understood in
erms of the overt clinical symptoms of inattention and hyper-
ctivity as defined by the DSM and measured on parent and
eacher-completed rating scales of behavior. More recently,

any ADHD theorists have highlighted the need for improved
nd testable theoretical frameworks for elucidating the biologi-
al abnormalities associated with this disorder [6,7,72,81]. This
as lead to an increased focus on the cognitive deficits in ADHD
sing methodology and theoretical approaches from cognitive
sychology.

It is now believed that the attention problems in ADHD are
ot manifest in information processing or perception per se
90,110]; instead, the current literature on the neuro-cognitive
rofile of ADHD emphasizes impairments in laboratory tasks
f behavioral inhibition, delay aversion, sustained attention, and
xecutive function [73,93]. In particular, laboratory measures of
ehavioral inhibition (e.g., Stop Signal Task) and delay aver-
ion (e.g., the 2-Choice Task) have good discriminant validity
eparately and excellent discriminant validity together in dis-
inguishing persons with ADHD from normal control subjects
98,100]. The involvement of cholinergic systems in behavioral
nhibition and delay aversion are quite understudied, and only
ecently have the effects of nicotinic cholinergic manipulations
een examined in these domains.
.1. Behavioral inhibition

Deficits in behavioral inhibition are among the most well doc-
mented cognitive deficits in ADHD. A recent meta-analysis
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Fig. 2. The effect of nicotine on “go” reaction time (top panel) and accuracy
(lower panel) on the Stop Signal Task in adolescents and young adults with
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ound that the strongest and most consistent group differences
etween ADHD and control subjects were on the Stop Signal
ask [119]. The Stop Signal Task is a measure of behavioral inhi-
ition that is not influenced by reward seeking [56] and involves
wo concurrent tasks for subjects, a “go task” and a “stop task,”
rom which a stop signal reaction time (SSRT) can be calcu-
ated. The SSRT provides an estimate of the speed of inhibiting
response, thus reflecting activation of inhibitory systems. Neu-

oimaging studies reveal that subjects with ADHD have reduced
rontal and striatal activation during performance of inhibition
asks [25,27,43] and several studies provide evidence that SSRT
s improved by acute administration of psychostimulants [5,15].
owever, psychostimulants also have a non-specific effect on

eaction times (faster) in all phases of the task [11,104,105].
hus, it is difficult to interpret the effects of psychostimulants
n inhibitory processes when more global processes such as
eaction time are enhanced.

Our laboratory has recently examined the effects of acute
icotine administration on behavioral inhibition in both non-
moking adolescents and young adults with ADHD [77,78]. In
ne study, adolescents were acutely administered either nicotine
r methylphenidate (subjects’ usual morning dose). Nicotine
as well as methylphenidate) improved behavioral inhibition as
eflected in significantly faster SSRTs (Fig. 1). Data from a sec-
nd study extended the finding of a positive effect of nicotine
n behavioral inhibition to young adults with ADHD (Fig. 1).
mportantly, the effects of nicotine in the Stop Signal Task were
ot due to global improvements in performance as there were
o significant differences found on go-reaction time or accuracy
which was above 90% for all doses on all blocks) in either study
Fig. 2).

An additional study in humans examined the effect of nicotine

n inhibition using the Stroop Task, which measures cogni-
ive interference control. Subjects must inhibit a faster cogni-
ive process (word reading) to respond with a slower cognitive
rocess (color naming). The primary outcome variable on the

ig. 1. Stop signal reaction time was improved by nicotine treatment in both
dolescents (top panel) and young adults (lower panel) with ADHD.
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DHD. There were no statistically significant effects of nicotine on either of
hese parameters.

troop Task is the Stroop Effect, a measurement of the cost of
nhibiting the automatic process (word reading) and respond-
ng with a slower process (color naming). Studies have found
hat children and adolescents with ADHD have a larger Stroop
ffect compared to normal controls [57,59,74]. Nicotine, but not
ethylphenidate, produced an improvement on the Stroop Task

n adolescents with ADHD, reflecting improvement in inhibitory
unction (Fig. 3).

We have recently examined the effects of nicotine on condi-
ioned inhibition in rats using a serial feature negative discrim-
nation task [60]. In this paradigm, a stimulus Y is followed by
ood reward on some trials, but on other trials Y is preceded
y another stimulus, X. On those trials food is not delivered
fter presentation of Y. Although there are limitations in directly

omparing this task to the Stop Signal Task in humans, it is
oteworthy that inhibition was enhanced in rats treated with
icotine, as evidenced by a greater discrimination between the
wo trial types. Notably, nicotine decreased responding on the

ig. 3. Nicotine enhanced the performance of adolescents with ADHD in the
troop Task.
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on-reinforced trials but did not affect responding on reinforced
rials, as observed with humans in the Stop Signal Task.

.2. Delay aversion

In addition to behavioral inhibition, another cognitive pro-
ess that is believed to contribute to overt behavioral symptoms
n ADHD is delay aversion. The delay aversion hypothesis char-
cterizes impulsive behavior as the expression of a motivational
tate in which the person makes a rational choice to avoid delay
99]. This hypothesis has been experimentally tested using the
hoice Delay Task in which the subject repeatedly chooses
etween a smaller-sooner and a larger-later reward. The Choice
elay Task is administered with a fixed number of trials so

hat smaller-sooner choices are associated with a shorter testing
ession but less overall reward. Children with ADHD exhibit
ignificantly fewer larger-later reward choices than non-ADHD
hildren [98,99].

We have recently conducted a small scale study examining
he effects of acute nicotine administration on delay aversion in
oung adults with ADHD. Nicotine was administered transder-
ally (7 mg patch) for 45 min and delay aversion was measured
ith the Choice Delay Task. There was evidence of an increase

n the number of delayed choices made during the nicotine con-
ition (Fig. 4), indicative in a change in the ability of persons
ith ADHD to refrain from responding and choose to wait for

arger rewards (p < 0.08).

.3. Sustained attention

Deficits in sustained attention are among the strongest finding
n studies of the cognitive deficits in ADHD [119], although they

ay be secondary to deficits in inhibition [72]. Regardless, it is
ossible that persons with ADHD use nicotine to improve sus-
ained attention. Nicotine has well described effects on improv-
ng sustained attention in humans as assessed in the Continuous
erformance Task. These include positive findings in normal

oung adults as well as non-abstinent smokers [54]. Studies of
he effects of nicotine on persons with ADHD have found that
icotine improves accuracy (d′) on this task [95]. Other studies
ave revealed nicotine-induced reductions in errors of omission

ig. 4. The effect of nicotine on delay aversion in young adults with ADHD
n = 9). There was a trend (p < 0.08) for increased tolerance for delay (more
elayed choices) following nicotine administration.

s
h
e
a
i
[
o
i

5
o

o
w
e
p
m
w
s

Research 175 (2006) 201–211 205

nd reductions in the variability of response times [53] demon-
trating a beneficial effect of nicotine on sustained attention in
atients with ADHD.

In laboratory animals, sustained attention has been examined
sing the 5-choice serial reaction-time (5-CSR) task. Nico-
ine administration improves performance on this task generally
nly when the baseline performance is deficient, i.e., in stud-
es using brain lesioned rats or rats that have existing deficits
n this task [37,38,69]. In addition, recent studies in mice
sing the 5-choice serial reaction time task found that nico-
ine improved sustained attention and that �7 knockout mice
ad higher errors of omission on a modified version of the
ask [121,122]. These data are consistent with the notion that
icotinic acetylcholine receptors play a significant role in sus-
ained attention and suggest an additional mechanism by which
ersons with ADHD may use nicotine to alleviate cognitive
ysfunction.

.4. Working memory

Cholinergic systems are also thought to play a key role in
orking memory [35,71], another aspect of cognitive dysfunc-

ion associated with ADHD. Nicotine has been shown to enhance
orking memory in deprived healthy smokers [31] and in var-

ous studies with laboratory animals. For example, both �4�2
nd �7 nicotinic agonists improve working memory and nico-
inic antagonists disrupt working memory [49]. Hippocampal
nfusion of the centrally-acting nicotinic antagonists produces
patial working memory deficits in the radial arm maze [29]. In
ontrast, nicotine does not appear to have an effect on reference
emory [50,51,54].
To our knowledge, there has yet to be a comprehensive inves-

igation of the effects of nicotine on working memory in persons
ith ADHD. Nonetheless, it is noteworthy that the working
emory deficit in ADHD is thought by some researchers to

eflect an inability to suppress irrelevant information [23]. Stud-
es by Buccafusco and others suggest that nicotinic receptor
timulation may improve working memory in rats and non-
uman primates by reducing distractibility [79,80,107]. For
xample, nicotine as well as the nicotinic agonists ABT-418
nd ABT-089 improved performance in a delayed-recall task by
ncreasing accuracy particularly when a distracter was present
79]. Thus, nicotinic stimulation may improve working mem-
ry by enhancing the ability to inhibit irrelevant (distracting)
nformation in ADHD.

. Neural mechanisms mediating the effects of nicotine
n cognitive impairment in ADHD

There are several neural mechanisms by which stimulation
f central cholinergic systems may affect cognition in persons
ith ADHD. Administration of nicotine may produce a “direct”

ffect by enhancing cholinergic-mediated cognitive functions

er se. An alternate, “indirect” mechanism by which cholinergic
anipulations may influence cognitive performance in persons
ith ADHD is through cholinergic modulation of dopaminergic

ystems and dopamine-mediated functions.
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Fig. 5. Major cholinergic pathways in the CNS and sites of potential interaction
between cholinergic and dopaminergic systems. Magnocellular neurons in the
MSA and SI/nBM provide the major cholinergic innervation of the hippocampus
and neocortex, respectively (red arrows). Neurons located in the PPT and LTN
provide cholinergic input to dopaminergic cell groups in the SN, VTA, and nAcc
(orange arrows). Dopaminergic neurons in the SN and VTA project to areas
including the hippocampus, MSA, cerebral cortex, and nAcc (purple arrows).
Abbreviations: Hp, hippocampus; MSA, medial septal area; SI/nBM, substantia
innominata/nucleus basalis magnocellularis; PPT, pedunclopontine tegmental
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ucleus; LTN, laterodorsal tegmental nucleus; VTA, ventral tegmental area;
Acc, nucleus accumbens; SN, substantia nigra.

.1. Central cholinergic systems

The beneficial effects of nicotine on cognition in ADHD
ould arise from direct effects on cognitive functions known
o be mediated by central cholinergic systems such as the basal
orebrain cholinergic system (BFCS). The BFCS is composed
f a continuum of several different nuclei including the medial
eptum (MS), the vertical and horizontal limbs of the nucleus of
he diagonal band of Broca (VDB/HDB), globus pallidus (GP),
entral pallidum (VP), magnocellular preoptic area (MgPO),
nd substantia innominata (SI)/nucleus basalis magnocellularis
nBM; referred to in primates as the nucleus basalis of Meyn-
rt). Magnocellular neurons located in these nuclei provide the
ajor cholinergic innervation of the cortex and hippocampus

114] as shown in Fig. 5. The BFCS has often been divided into
wo main projection pathways, a medial and a lateral pathway
46,58,85,86]. The vast majority of neurons that constitute the
edial pathway are located more rostrally (MS, VDB), and pri-
arily innervate the hippocampus, and also the cingulate and

etrosplenial cortex. In contrast, most neurons comprising the
ateral pathway are located in the caudal extent of the basal fore-
rain (SI/nBM, GP, VP), and provide widespread innervation of
he neocortical mantle (see Fig. 5).

These components of the BFCS are critically involved in vari-
us aspects of attentional function, including sustained attention,
elective attention, and the ability to increase and decrease atten-
ion to stimuli [8,9,16,18,20,39,62,88,89]. Indeed, it has been
uggested that dysregulation of cholinergic systems may con-
ribute to attentional deficits in some forms of ADHD [10].

he cholinergic system supports the detection of external sig-
als (bottom-up information processing) as well as supporting
rocessing of task relevant and knowledge based detection pro-

t
I
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esses (top-down information processing; [89]). Recruitment
f the system appears to increase with increasing cognitive
emands and may reflect effortful processing. Impairments in
holinergic system functioning are likely to result in impair-
ents on tasks the have high attentional demands such as tasks

hat are difficult, require task or context switching, or require
earching for targets [26].

.2. Cholinergic–dopaminergic interactions

Stimulation of cholinergic receptors located on dopaminergic
eurons results in increased activation of central dopaminer-
ic systems and may lead to enhancement of dopaminergic-
ediated functions [21,83,120]. There are several major

opaminergic systems in the brain that have been implicated in
he pathophysiology of ADHD. These systems originate in the
ubstantia nigra (SN) or ventral tegmental area (VTA; [106]).
he mesostriatal dopaminergic system originates in the SN and
rojects primarily to the neostriatum, specifically the caudate
nd putamen. The mesolimbic system originates in the VTA,
roviding dopaminergic innervation of the limbic system (e.g.,
mygdala, nucleus accumbens, and hippocampus) as well as
rontal cortical areas. In turn, the VTA receives feedback con-
ections from frontal cortex and nucleus accumbens, and serves
o regulate reward and certain motivational processes [110].
ndeed, behavioral inhibition is thought to be associated with
he mesocortical branch of the dopamine system projecting into
he pre-frontal cortex and that delay aversion is related to moti-
ational processes involving the mesolimbic dopamine system
92].

There are a variety of mechanisms and anatomical loci where
opaminergic and cholinergic systems may directly interact,
ossibly mediating the positive effects of nicotine on individ-
als with ADHD (Fig. 5). Comprehensive anatomical studies
ave identified approximately eight different cholinergic pro-
ection systems [65,84,113]. At least three of these cholinergic
ystems, originating in various brainstem nuclei (e.g., pedun-
ulopontine (PPT) and laterodorsal tegmental (LTN) nuclei),
rovide direct input to dopaminergic cell groups in the SN
nd VTA [113]. Recent studies confirm a direct synaptic con-
ection between cholinergic terminals and dopaminergic cell
odies in the VTA [34]. Indeed, nicotine has been shown to
ncrease the release of dopamine in both striatal and mesolimbic
opaminergic pathways [21,83,120]; Levin et al. [52] found that
ctivation of nicotinic receptors and dopamine receptors is addi-
ive, and possibly synergistic. Conversely, the nicotinic blocker

ecamylamine decreases dopamine activity in mesolimbic and
igrostriatal systems [52]. Furthermore, cholinergic neurons in
he LDT have been found to modulate dopaminergic activity in
he nucleus accumbens [30], and cholinergic stimulation of the
TA activates mesolimbic dopamine systems [36]. Nicotinic

cetylcholine receptor activation has recently been shown to
ncrease the expression of dopaminergic biosynthetic enzymes
In addition, there is evidence of a dynamic functional interac-
ion between dopaminergic and cholinergic systems in ADHD.
n a study showing that ADHD was associated with elevations in
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he dopamine transporter (DAT), further analyses revealed that
subset of subjects smoked cigarettes and that this group actu-

lly exhibited significantly lower levels of DAT [43]. These data
upport the notion that nicotine use may act directly on DAT
43], providing a mechanisms by which nicotine may improve
unctions regulated by dopaminergic systems. Other data indi-
ate that interactions between brainstem cholinergic systems and
opaminergic pathways may have a significant role in reward
echanisms. Indeed, several recent behavioral studies provide

trong support for that notion [40,64].

.3. Cortical–subcortical interactions

Recent studies have suggested that there are a series of control
oops or pathways involving cortical and subcortical structures
hat alter the activity of the output nuclei of the basal ganglia.
ne particularly important pathway is the so-called “hyperdirect
athway” which involves the subthalamic nucleus, apparently
nder glutamatergic and GABA-ergic control, in modulating
he output of basal ganglia output structures such as the globus
allidus [70]. Recently, functional imaging studies have demon-
trated the importance of the subthalamic nucleus and the hyper-
irect pathway and suggest that they play a critical role in the
stop” process in the Stop Signal Task [4]. Since the subtha-
amic nucleus contains �7-nicotinic cholinergic receptors and
erhaps other nicotinic receptors [82,91], nicotine may improve
erformance on the Stop Signal Task throughput through the
ubthalamic nucleus, improving its ability to modulate or inter-
upt “go” signals when a stop signal is generated cortically.
onversely, individuals with ADHD may either have deficits

n this pathway or within the cortical impulse generators them-
elves that produce impairments in this task and in other types
f impairments of control or impulsive responding.

. Therapeutic implications

A more thorough understanding of cholinergic contributions
o the cognitive deficits in ADHD may lead to new and improved
herapies for this disorder. Indeed, cognitive deficits are currently
hought to give rise to the overt behavioral symptoms of ADHD
Barkley [6,7], Sonuga-Barke et al. [99]) thus alleviating cogni-
ive dysfunction may reduce ADHD behavioral symptoms.

Although psychostimulants are effective for many patients
ith ADHD, their use has several limitations. For example,
nly 70% of patients will achieve a therapeutic response to a
sychostimulant [14], and the effects of long term of stimu-
ant treatment during child development are only now being
xplored with some results suggestive of long-lasting negative
ffects [112]. One recent study indicates that stimulants increase
moking behavior by increasing the relative reinforcing effects
f cigarette smoking [108]. This suggests that stimulant medi-
ation, while exhibiting clinical efficacy may actually increase
he risk of these individuals becoming regular smokers over and

bove the risks associated with the disorder itself.

The prospect of developing specific cholinergic therapeu-
ic approaches in ADHD has been a subject of increasing
nterest over the last several years. With the advent of well
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olerated, orally available cholinergic agents, the potential for
tilizing cholinergic treatment as either a primary or sec-
ndary approach to treating ADHD has become a more real-
stic possibility. Currently available agents include non-specific
ral anti-cholinesterases, including donepezil, galantamine, and
ivastigmine. Both donepezil and galantamine have both been
eported to be helpful as an adjunctive treatment in childhood
DHD [47,117] with positive clinical benefits reported. Report-

dly, galantamine significantly improved both clinical ratings
nd measures of executive function while donepezil produced
maller, non-significant improvements. It is notable that a major
ifference between these two agents is that galantamine, in addi-
ion to its anticholinesterase effects, which are relatively weak,
lso has positive allosteric effects at �4�2 nicotinic receptors.

Despite these positive preliminary findings, there are sig-
ificant obstacles to the widespread or long-term use of anti-
holinesterase medication in ADHD, particularly in childhood.
he effect of long-term administration of centrally and periph-
rally active anti-cholinesterase agents to children, adolescents,
nd young adults is unknown. For example, the ovary is known to
ontain muscarinic receptors which may have a variety of reg-
latory roles on ovarian function [33,61], and concerns could
e raised about whether alterations to ovarian function could
e produced. Furthermore, oral cholinesterase inhibitors have a
elatively narrow therapeutic index even in adults and therefore
he tolerability of these agents, particularly in children, is open
o some question.

Potentially more practical may be the development of novel
icotinic agonists for ADHD either as an adjunctive treatment
r a primary treatment. While nicotine itself has a very narrow
herapeutic index, novel nicotinic agonists have been developed
hat appear more likely to be therapeutically acceptable to chil-
ren and adolescents (e.g., ABT-089). ABT-089 was superior
o placebo based on improvements in symptom scores, ADHD
ndex hyperactive/impulsive ratings, and clinical global impres-
ion. While ABT-089 and similar compounds target the �4�2
icotinic receptor, there is also interest in drug development tar-
eting the �7 nicotinic receptor subtype. Abnormalities in the
xpression of this receptor have been identified as being impor-
ant in attentional impairments in schizophrenia [32,48].

If nicotinic agents alleviate cognitive impairment in ADHD
nd produce relevant improvements in the overt symptoms of
DHD, then the clinical role of such agents will need to be deter-
ined. It is unclear whether these agents will have the magnitude

f effects necessary to adequately treat the clinical symptoma-
ology of ADHD. Whether they are used adjunctively or as a
rimary therapy, nicotinic stimulation may have the side benefit
f lowering the risk of initiation of cigarette smoking by adoles-
ents and young adults with ADHD. This alone may be a strong
rgument to consider their use, especially as there is evidence
hat stimulant use may actually increase the reinforcing aspects
f cigarette smoking [108,115].
. Conclusions

The literature described in this review provides important evi-
ence for the potential involvement of central nicotinic cholin-
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rgic systems in cognitive dysfunction in ADHD. Persons with
DHD use and abuse nicotine products at a much higher

ate than the general public, suggesting that persons may self-
edicate with nicotine. Moreover, clinical trials of drugs that

timulate nicotinic receptors have demonstrated clinical benefits
n ADHD [51,116,118]. Additional studies indicate that nicotine
reatment has specific effects on the cognitive domains that are
urrently proposed to be central to the disorder, including behav-
oral inhibition, delay aversion, sustained attention, and work-
ng memory [77,78]. In addition, recent neuro-genetics studies
rovide evidence that cholinergic function may be altered in per-
ons with ADHD via alterations in specific nicotinic cholinergic
eceptor subtypes [41,42,109].

Nevertheless, the role of cholinergic systems in the cognitive
eficits associated ADHD is greatly underappreciated as well
s understudied. Despite several advances, it still remains
nclear whether cholinergic dysfunction is part of the etiol-
gy of ADHD. It is also unclear whether nicotine enhances
holinergic-mediated cognitive functions and/or attenuates
ymptoms indirectly by stimulating other dysfunctional neuro-
ransmitter systems (e.g., dopamine). Likewise, it is unknown
f the effects of nicotine on cognition in ADHD are mediated
y cholinergic systems per se, or cholinergic modulation of
opaminergic function. Future studies in laboratory animals
ould be carried out using combined neurochemical lesion
nd pharmacological approaches as well as receptor knockout
odels to address some of these questions. Complementary

tudies in humans would be useful to examine the effects of
ubtype-specific cholinergic receptor antagonists on the core
ognitive functions currently thought to underlie ADHD, such
s behavioral inhibition and delay aversion. Together, these
venues of research may lead to new therapies for ADHD, as
ell as a better understanding of the etiology of the disorder.
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