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Abstract. 1. For the first time, long-term changes in total aerial insect biomass
have been estimated for a wide area of Southern Britain.
2. Various indices of biomass were created for standardised samples from four of

the Rothamsted Insect Survey 12.2 m tall suction traps for the 30 years from 1973 to
2002.
3. There was a significant decline in total biomass at Hereford but not at three

other sites: Rothamsted, Starcross and Wye.
4. For the Hereford samples, many insects were identified at least to order level,

some to family or species level. These samples were then used to investigate the taxa
involved in the decline in biomass at Hereford.
5. The Hereford samples were dominated by large Diptera, particularly Dilophus

febrilis, which showed a significant decline in abundance.
6. Changes in agricultural practice that could have contributed to the observed

declines are discussed, as are potential implications for farmland birds, with sugges-
tions for further work to investigate both cause and effect.
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Introduction

There is widespread concern over biodiversity extinction rates
and their impact on the human species (Pimm et al., 1995).More

than half of all known species are insects (May, 1988) and, if the
known global extinction rates of vertebrate and plant species are
found to be paralleled in the insects and other invertebrates, the
suggestion that the world is experiencing its sixth major extinc-

tion event would be greatly strengthened (Thomas et al., 2004).
There are very few standardised, long-term datasets on insect
populations available to confirm or refute this. Exceptions in the

UK include butterflies and moths, many species of which have,
indeed, been shown to be declining at alarming rates (Warren
et al., 2001; Conrad et al., 2004, 2006; Thomas et al., 2004). In

contrast the abundance of many pest insects is thought to be
increasing (Cannon, 1998). For the vast majority of insects
throughout the world, solid evidence one way or the other is

largely lacking.
Even insects that are pests of crops may be beneficial in sup-

porting higher trophic levels such as birds, many of which have

undergone well-documented declines in recent years. These

declines coincided with a period of agricultural intensification
(Buckwell &Armstrong-Brown, 2004; Buckingham et al., 2006),
one effect of which was almost certainly to reduce popula-

tions of certain insect groups (Aebischer, 1991; Woiwod,
1991) and birds (Chamberlain et al., 2000) in farmland.
The declines in bird and insect populations may be mech-
anistically linked, at least in some species. In support of

this suggestion, Benton et al. (2002) found temporal cor-
relative links between numbers of farmland birds, num-
bers of invertebrates, and agricultural practice near

Stirling in Scotland. In that study, invertebrates were
monitored using a 12.2 m tall suction trap (Macaulay
et al., 1988) of the type used by the Rothamsted Insect

Survey (RIS) (Harrington & Woiwod, 2007). The Stirling
study demonstrated the potential value of these traps in
monitoring the availability of insects to farmland birds

over a large area and recommended examination of data
from other traps in the RIS national network.
This study uses the historical samples from four RIS

suction traps to compile indices of total aerial invertebrate

biomass at those sites and then investigates temporal
trends, using subsets of these samples to elucidate the taxa
mainly responsible.
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Methods

Rothamsted Insect Survey suction traps (Macaulay et al., 1988)
have been used to monitor aphids in the UK since 1965
(Harrington & Woiwod, 2007). The trap inlet is 12.2 m above

ground level and the traps are standardised to sample 50 m3 air
per minute. Traps are emptied daily. Aphidoidea (aphids) are
removed, identified, counted and stored.Neuroptera, Syrphidae,

Coccinellidae, Lepidoptera, Apoidea and Vespoidea are also
removed from samples, identified, counted and, until recently,
destroyed. The rest of the sample (referred to hereafter as ‘other

insects’, but including a few arachnids) is stored in a mixture of
ethanol and glycerol. Several of these samples have become
dehydrated at various times, but the presence of glycerol has
meant that they have rarely dried out completely and can be re-

hydrated with little damage. Samples from 1973 onward are
available for most sites, although the trap at Rothamsted has
threemissing years from1976 to 1978.At various times, for vari-

ous reasons, certain ‘other insects’ have been removed. In most

cases, adequate records of such removals are available, but for
some years records for certain species have been lost. However,

such losses have very little impact on the current study. Data
from the RIS traps at Rothamsted, Hereford, Wye and Star-
cross (Figure 1) are analysed in this paper.

Total biomass

An index of total biomass was created for each of the four
RIS traps as follows. Samples of ‘other insects’ trapped on every
fourth day from 1st April to 30th September between 1973 and

2002 were emptied onto a piece of muslin over a beaker and the
alcohol drained off. The insects from each sample were then
transferred to filter paper and weighed. A ‘wet weight’ of insects

was obtained by re-weighing the filter paper after the insects had
been replaced in their bottles and subtracting this weight from
the combined weight of insects and filter paper. Tests showed

that the effect of liquid evaporation between weighings was neg-
ligible. Some other material, including seeds, was present in the
samples but, compared to the ‘other insects’, this did not consti-

tute a significant mass. Wet weights of the insect taxa which had
been removed from the samples were estimated and recorded
separately for each taxon. In these cases, samples from every day
(not every fourth day) were assessed. Weights of these removed

taxa were estimated by weighing known numbers of individuals
and regressing total weight on number of individuals present,
the slope being the mean weight. Mean weights were multiplied

by the number of removed insects in each sample for inclusion
in the sample’s total annual biomass index. As long-term count
data were already available for aphids, moths and social wasps,

these were also converted into biomass estimates. All biomass
measurements for each year were converted into mean wet
weight per sample, logged (to base 10), and were then regressed

on year (Harrington et al., 2003).

The Hereford data

Analysis of data from all the four sites showed a decline in
biomass with year at the Hereford trap, but not at the other

three (see ‘Results’). Further work was therefore carried out on
the Hereford trap samples to identify declines in individual taxa.
Time constraints meant that only larger insects (those that did

not pass through a 2 mm · 2 mm sieve) could be included in
this analysis, but numbers of smaller insects were found not to
decline significantly with year (Moore et al., 2004) and so it is
unlikely that individual taxa within this fraction would show

significant decline.

Biomass. Samples were combined to produce an annual

index of biomass using 26 sample dates from each of the years
1973–2004 as follows. Samples were taken from the day with the
highest maximum temperature in each sample week starting on

the 2nd April and ending on 30th September, using Hereford
(Rosemaund) meteorological data from BBSRC ARCMET
database (�Crown copyright 2008, theMet. Office). Samples of

‘other insects’ were first passed through a 2 · 2 mm sieve to
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Fig. 1. Location of RIS suction traps in the UK. Filled stars

indicate sites used in this study.
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remove the smaller insects and then the biomass (‘wet weight’ in
alcohol) of the insects retained on the sieve (i.e. the larger insects)

was recorded. An approximate wet weight for previously
removedNeuroptera, Syrphidae, Coccinellidae andLepidoptera
was calculated (see above) and added to the observed wet

weight. Measurements for each year were converted into mean
wet weight per sample. The mean weights were logged [log10
(n + 0.05)], and these indices of biomass were regressed on

year.

Counts. The larger insects from the 12 weeks of highest bio-

mass, 23rd April to 3rd June (spring) and 20th August to 30th
September (autumn), were identified as follows and counted.
The Bibionidae, which dominated many of the samples in terms
of mass, were identified to species, counted and weighed. In the

case of males of the genus Dilophus, the first one hundred indi-

viduals were identified to species [invariably D. febrilis (L.), the
fever fly] and the rest were assumed to be the same species. Other

taxa identified and counted were: Coleoptera (to family, occa-
sionally genus or species); Diptera (to family); Hemiptera
(Auchenorrhyncha to family, Heteroptera to sub-order); Neu-

roptera (to family); Dermaptera (to species); Hymenoptera (to
super-family, family, genus, or species as feasible); Trichoptera
(to order); Ephemeroptera (to order) and Araneae (to division).

A combinedweight for these other taxa was recorded.Microlep-
idoptera from the last 3 years of study were not available, but
owing to the small numbers recorded in other years they were

not expected to contribute significantly to the overall biomass.
The data from biomass and counts were analysed using

GenStat (Payne et al., 2005). Linear regressions on year were
carried out for all data and bootstrap estimates made from 1000

resamples.

Fig. 2. Trends in total insect biomass (log10 mean weight in grams of insects per sample) plotted against year with 95% confidence

intervals.
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Results

There was a significant decline (P < 0.001) in total biomass
with year at Hereford, but no significant trend at Rothamsted
(P = 0.52), Starcross (P = 0.42) or Wye (P = 0.63) (Fig. 2)

(see Table 1 for a summary of all statistics).
Total aphid biomass did not show a significant trend with

year at any site (P > 0.05). There was a significant decline in

moth biomass at Hereford (P < 0.001), Starcross (P < 0.001)
and Wye (P < 0.05) but not at Rothamsted (P > 0.05). There
was no significant trend (P > 0.05) in biomass of social wasps

at Rothamsted, but a significant decline at Hereford
(P < 0.05). These three groups (aphids, moths and social
wasps) each form only a small proportion of the total aerial
biomass.

The Hereford samples

There was a strong decline in biomass of larger insects at
Hereford (P < 0.001; Fig. 3) along similar lines to that recorded

in the total biomass index, which included insects of all sizes.
When the data were converted into a weekly mean across years,
the majority of the biomass was concentrated in two peaks, a
large spring peak around May (weeks 18–22) and a smaller

autumn peak in September (weeks 36–39) (Fig. 4).
In terms of numbers, the Bibionidae (Diptera) made up the

greater part of the samples of larger insects in most years, espe-

cially in spring (Table 2). Themajor orders in the samples of lar-
ger insects were Diptera and Coleoptera, with Hymenoptera
and Lepidoptera also having large percentages in some years.

The total bibionid catch was 60,308 individuals. The families

with the highest counts of larger insects other than Bibionidae
were: Chironomidae (Diptera) 914, Empididae (Diptera) 327,
Anthomyiidae (Diptera) 317, Anisopodidae (Diptera) 133,
Calliphoridae (Diptera) 122, Tipulidae (Diptera) 112, Curculi-

onidae (Coleoptera) 341, Staphylinidae (Coleoptera) 246 and
Carabidae (Coleoptera) 108. Of these the Tipulidae, Calliphori-
dae and some Carabidae (e.g. Amara sp.), being large insects,

will have had a greater effect on the total wet weight.
The wet weight of bibionids declined significantly

(P < 0.001) during the period (Figure 5), as did the wet weight

of the remaining large Diptera combined with other taxa
(P < 0.05) (Figure 6). Tests of parallelism showed that the
bibionid wet weight did not decline at a significantly different

rate to that of the remaining large Diptera combined with other
taxa (P > 0.05).
The majority of all samples of larger insects were Diptera and

the majority of these Diptera were Bibionidae. In the logged

count data the decline of bibionids was particularly evident dur-
ing the spring (P < 0.01) (Fig. 7), and was significantly greater
(P < 0.001) than for each of the other taxa examined, amongst

which only the combined other large Diptera declined signifi-
cantly (P < 0.05). In the autumn the pattern was similar,
bibionids declining (P < 0.05) and other largeDiptera declining

(P < 0.05) (Fig. 8). The small numbers of individuals of other
taxa recordedmayhave reduced the statistical power of the anal-
yses and may be the reason for the lack of significance in some

cases. The trend for summer has not been determined, because
of the relatively small number of large insects sampled.

Discussion

Linear regression analyses have been used to describe the overall

trends in biomass and abundance of a range of insect taxa.
Cyclical patterns of temporal variation may occur but these
require more data to elucidate with confidence and will be inves-

tigated in future studies.
The decline in total invertebrate biomass in the Hereford suc-

tion trap with time was clear but was not repeated at the other

Fig. 3. Total annual biomass index of larger insects in stored

samples from Hereford suction trap plotted against year with

95% confidence intervals.

Fig. 4. Mean weekly biomass index (1973–2004) of larger insects

from Hereford suction trap.
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three sites examined.However, the total biomass in theHereford
trapwasmuchgreater thanat the other sites, especially in the ear-

lier years, so it is possible that any overall declines at the other
sites had already taken place before 1973. Indeed the little evi-
dence available does suggest that such declines, at least for the

Lepidoptera in arable areas, took place as a result of the first
phase of agricultural intensification in the 1950s (Woiwod, 1991).

In the case of aphids the traps are representative of the aerial
population over at least an 80 km radius (Taylor, 1974; Benton

et al., 2002; Cocu et al., 2005). Whether this is the case for all
taxa has not been investigated, so the spatial extent of the decline
in the Hereford area is not certain, although insects flying at

12.2 m are likely to be affected by wind, and therefore rando-
mised, over a considerable area (Taylor, 1974).

Fig. 5. Total annual biomass of Bibionidae in samples from

Hereford suction trap plotted against year with 95% confidence

intervals.

Fig. 6. Total annual biomass of other large insects in samples

from Hereford suction trap plotted against year with 95% confi-

dence intervals.

Fig. 7. Total number of larger insects in spring samples from the

Hereford suction trap plotted against year. Bibionidae

Coleoptera Other Diptera Hymenoptera

Lepidoptera Hemiptera

Fig. 8. Total number of larger insects in autumn samples from

the Hereford suction trap plotted against year (for legend, see

Fig. 7).
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The fraction in the trap samples that did not pass through a
2 · 2 mm sieve made up only 16% of the total number of

individuals sampled (Moore et al., 2004), although its
contribution to the total biomass was much greater. There was
much annual variability in the data so that whilst the decline in

biomass and number of bibionids and other Diptera was highly
significant, the year term only accounted for a relatively small
percentage of the variance.

Dilophus febrilis adults first appear in late April and early
May, with warm dry weather favouring early emergence. Unlike
otherDilophus and Bibio species,D. febrilis appears throughout

the year with peaks in spring and autumn (Freeman & Lane,
1985). They are active in bright sunshine, visiting flowers of culti-
vated and wild plants (Edwards, 1941) and are possibly impor-
tant supplementary pollinators of fruit trees (Free, 1970;

D’Arcy-Burt & Blackshaw, 1991). The species is known to
swarm in mass aggregations on low vegetation (Freeman &
Lane, 1985). After mating the females burrow into the soil,

where 200–300 eggs are laid in an egg sac at a depth of 3 cm or
more. After this the female flies die, usually just outside the egg
sac. The males do not survive long after mating (Freeman &

Lane, 1985). The larvae have been reported to damage various
crops and grass lawns, but it is generally believed that they are
harmless, feeding mainly on decaying organic matter with more
damage caused by birds searching for the larvae, than by the

larvae themselves (Edwards, 1941; D’Arcy-Burt & Blackshaw,
1991). D’Arcy-Burt and Blackshaw (1991) reported high abun-
dance of bibionids in the UK in1976 ⁄77 and 1984 ⁄85. These are
not reflected in the current study; in fact 1984 ⁄1985 showed a
relatively low abundance in theHereford dataset.
The factors that have affected populations of insects at Here-

ford are unknown. Benton et al. (2002) suggested that changes
in aerial arthropod abundances, as reflected in suction trap sam-
ples, are related to regional changes in farmland practice. One

factor could be a reduction in the use of organic fertiliser,
although Edwards (1941) claimed that the incidence of attacks
by bibionid larvae on sports fields and private lawns is not neces-
sarily related to high amounts of humus and organic manure

input. Increased management of grassland and the associated
reduction of rough grassland has been cited as a reason for
reduced insect numbers (Newton, 2004), and this could affect

bibionid numbers. It is also possible that the decrease in biomass
is related to a general increase in the use of pesticides (Avery
et al., 2004; Boatman et al., 2004), although these declines were

not reflected in the biomass index at the other three sites. It is
known that many changes in agriculture occurred earlier in the
east of Britain than the west (Newton, 2004) and this may
explain the higher biomass atHereford early in the series in com-

parisonwith the other sites, although the other western site, Star-
cross, does not show the same pattern. The use of insecticides to
control the similar and closely related leatherjackets (Tipulidae

larvae) (McCracken & Tallowin, 2004) may have had an effect
on D. febrilis numbers and other studies have linked declines of
other taxa to the use of pesticides (Campbell et al., 1997; Sother-

ton & Self, 1999). Another possible factor is the use of avermec-
tins to treat cattle for parasites as this has been shown to have a
detrimental effect on dung insects (McCracken, 1993; Hutton &

Giller, 2003) and may also affect insects such as D. febrilis that

feed on decaying organic matter. Although this species domi-
nates the samples in spring, other large insects are also declining

at a rate that is not significantly different from the rate of decline
of bibionids. It is likely that the decline is due to factors that are
not taxon specific, although there are signs in this dataset that

theDiptera are beingmore affected than other taxa sampled.
There is increasing evidence of an indirect effect of insecticides

on birds (Donald et al., 2001; Boatman et al., 2004). Insects, par-

ticularly larger ones, are an important component of the diet of
many birds (Davies, 1977; Moreby, 2004). Diptera have been
identified as important in the diet of adults and chicks across a

range of species (Barker, 2004; Moreby, 2004; Buchanan et al.,
2006; Holland et al., 2006). Declining numbers of insects can
removean important sourceof food for chicksandhaveaknock-
on effect on population sizes of a wide range of bird species

(Southwood&Cross, 1969;Wilson et al., 1999). The Bibionidae
havebeen showntomakeupasignificantpartof thedipterandiet
of partridges, Perdix perdix (L.) (Evans, 1912), dunnocks, Pru-

nellamodularisL. (Moreby, 2004), swifts,ApusapusL. (Parment-
er & Owen, 1954) and other species (Buchanan et al., 2006). In
addition, larvae of bibionidsmay form an important component

of the diet of ground feeding birds and mammals, although the
soft bodies of the larvae mean that faecal and pellet analysis will
not reveal their presence (Moreby, 2004). Several studies have
highlighted the importance of tipulid larvae to birds (Holland

et al., 2006), but it is unclear what measures were taken to distin-
guish them from the very similar bibionid larvae. The declines
shown atHereford are thus likely to have had some effect on the

bird populations of the surrounding area. That bird populations
are in decline is not in doubt, for example between 1970 and 1990
the distribution of 86%and the abundance of 83%ofUK farm-

land bird species declined (Fuller et al., 1995). Over a longer per-
iod (1966–1999) significantdeclineswerealso recorded in10of 32
speciesofwoodlandbird(Fulleretal., 2005).

It is likely that species using tall landscape features as aggrega-
tion markers will be over-represented in suction trap samples in
relation to other species, although comparisons within species
should be sound.Observation ofD. febrilis by one of the authors

(CRS) at the Hereford suction trap indicated that it does not
have such aggregation behaviour and that the large numbers
caught were indicative of a high aerial density. Freeman and

Lane (1985) stated that Dilophus species typically form mass
accumulations on low vegetation and this is consistent with
observations atHereford.

Long-term trends in the abundance of social wasps from RIS
suction traps and other data series have been examined previ-
ously (Archer, 2001). The abundance of Vespula germanica
(Fabricius), but notV. vulgaris (L.) was shown to decline during

the late 1970s and early 1980s. Other long-term studies (Luff,
1990; Aebischer, 1991; Conrad et al., 2004) have identified
declines in numbers or species richness in other invertebrate

groups such as carabid beetles and Lepidoptera. It is interesting,
then, that significant declines in total annual insect biomass were
not found at three out of the four sites analysed here. It would

be worthwhile to look more closely at the data series from these
sites, together with other traps in the RIS network, to establish
the status of the larger Diptera in other areas for comparison

with theHereford results.
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Further work is necessary to quantify any changes to the
land-use in the area of the Hereford trap and determine whether

these are correlated with the observed declines. It would also be
interesting to examine bird census data from the Hereford area
to quantify any parallel declines. Stored RIS suction trap sam-

ples are available from other sites providing scope for studying
whether the trends reported here are applicable more widely.
There is also the suggestion of a multi-annual cycle in the wet

weight of Bibionidae (Fig. 5) that warrants further study.
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