

The Systemic Insecticides: A Disaster in the Making

Dr. Henk Tennekes

Swiss Society of Toxicology Annual Meeting 22 November 2012

"Knowing what I do,

there would be no future peace for me if I kept silent..."

Rachel Carson

- In 2009, Henk Tennekes discovered that the dose response characteristics of the toxicity of widely used neonicotinoid insecticides to arthropods were strikingly similar to those of genotoxic carcinogens. The effects of these compounds are massively reinforced by exposure time
- Realising the dire consequences of environmental pollution with these insecticides, Tennekes decided to write a book to warn the general public about an impending environmental catastrophe

German Edition of 'A Disaster in the Making'

Preface by Professor Hubert Weiger, Chairman, *Friends of the Earth Germany* German Translation: Sven Buchholz Tomas Brückmann Patricia Cameron

Herausgeber: Bund für Umwelt und Naturschutz Deutschland e.V. (BUND)

The Legacy of Rachel Carson

Silent Spring (1962)

- In 1962, the American biologist Rachel Carson published her book "Silent Spring", in which she describes rapidly declining biodiversity caused by widespread use of pesticides, such as DDT
- "Silent Spring" remains one of the most effective denunciations of industrial malpractice ever written and is widely credited with triggering popular ecological awareness in the US and Europe

DDT Becomes Concentrated In Food Chains

- DDT is highly lipophilic and only slowly metabolised, and becomes concentrated as it passes through a food chain
- The hazard of DDT to non-target animals is particularly acute for those species living at the top of food chains
- Carnivores at the ends of longer food chains (e.g. ospreys, pelicans, falcons, and eagles) suffered serious declines in fecundity and hence in population
- The use of DDT was banned (1972) in the United States

Neonicotinoids May Poison Non-Target Insects

- Neonicotinoid insecticides that are currently in use are water soluble (hydrophilic) and permeate the whole plant
- Advantage: Application rates are much lower than for traditionally used insecticides
- Disadvantage: Non-target insects such as honey bees or butterflies that collect pollen or nectar from the crop are poisoned

Lethal Effect of Imidacloprid on Honey Bees Toxicity Is Reinforced By Exposure Time

Suchail S, Guez D, Belzunces LP, 2001. Environ. Toxicol. Chem. 20: 2482-2486 Tennekes HA, Sánchez-Bayo F, 2012. J. Environment. Analytic Toxicol. S4- 001

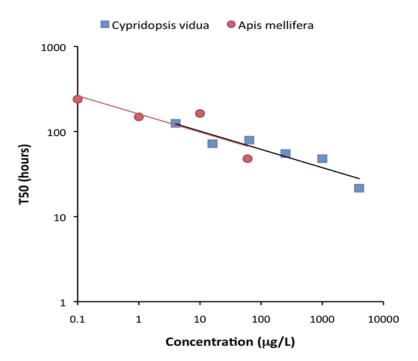
- The *lower* the exposure concentration, the *longer* the latent period up to a lethal effect, the *lower* the lethal dose
- The dose : response relationship is a Druckrey-Küpfmüller equation

Ln T50 (hrs) = 5.11 - 0.22 Ln C (µg. L-1 or kg-1)

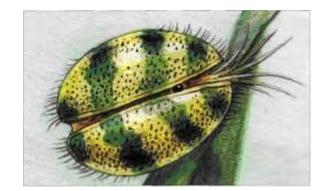
or

C x T50^{4.5} = constant

Concentration C (µg/L)	Latent Period T50 (hours)	Lethal Dose (µg/L x hours)
57	48	2,736
37	72	2,664
10	173	1,730
1	162	162
0.1	240	24



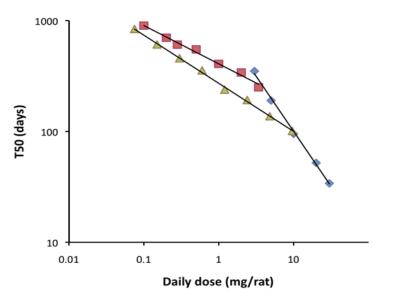
Lethal Effect of Imidacloprid on the Ostracod *Cypridopsis vidua* Toxicity Is Reinforced By Exposure Time


Sánchez-Bayo F. 2009. *Ecotoxicology* 18: 343-354 Tennekes HA. 2010. *Toxicology* 276, 1-4. Tennekes HA, Sánchez-Bayo F. 2012. *J. Environment. Analytic Toxicol.* S4- 001

 The *lower* the exposure concentration, the *longer* the latent period up to a lethal effect,

the lower the lethal dose

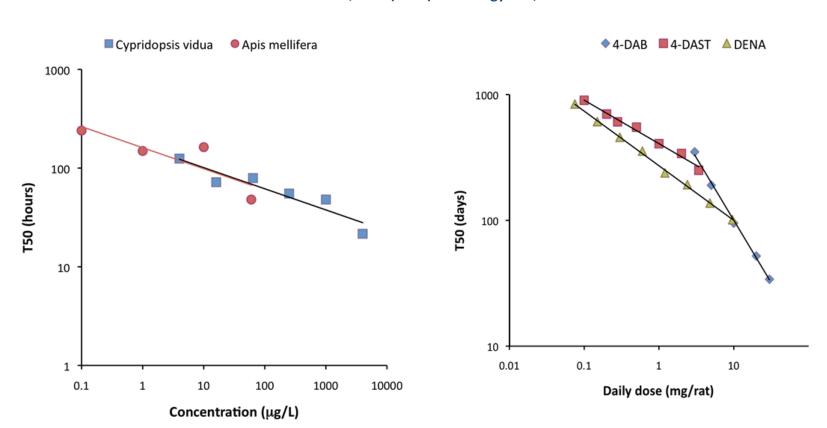
Concentration (µg/L)	Latent Period (days)	Lethal Dose (µg/L x days)
4,000	0.9	3,600
250	2.3	575
64	3.3	211.2
4	5.2	20.8



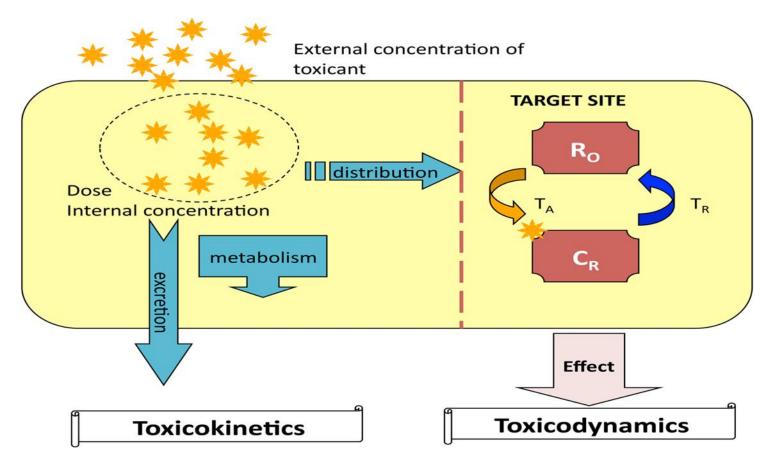
Induction of Liver Cancer In Rats By Diethylnitrosamine Toxicity Is Reinforced By Exposure Time


Druckrey, H., Schildbach, A., Schmaehl, D., Preussmann, R., Ivankovic, S., 1963. Arzneimittelforsch. 13, 841–851

 The *lower* the exposure concentration, the *longer* the latent period up to a carcinogenic effect, the *lower* the carcinogenic dose


🔷 4-DAB 📕 4-DAST 🔺 DENA

Daily Dose (mg/kg)	Latent Period (Days)	Carcinogenic Dose (mg/kg)
9,6	101	963
1,2	238	285
0,3	457	137
0,075	840	64


The Dose:Response Characteristics Of Genotoxic Carcinogens (Right) And Neonicotinoids (Left) Are Strikingly Similar Druckrey-Küpfmüller Equations C x T50 ⁿ = constant, with n ≥ 1

Tennekes, H.A. (2010) Toxicology 276, 1-4.

Toxicokinetics and Toxicodynamics (Druckrey-Küpfmüller Theorem)

The concentration or dose of the toxicant at the target site (C) is determined by toxicokinetic processes (absorption, distribution, metabolism and elimination) that take place inside the organisms. At the target site, toxicant molecules may bind to critical receptors (R_0) and produce a toxic effect. The toxicodynamics determine the relationship between relative toxicant concentration at the target site (C/R_0) and relative concentration of bound receptors (C_R/R_0), which determines the effect. The time constants for association (T_A) and dissociation (T_R) are critical variables that determine the nature of dose : effect relationships

The Druckrey-Küpfmüller Theorem

Druckrey, H. & Küpfmüller, K. (1949).

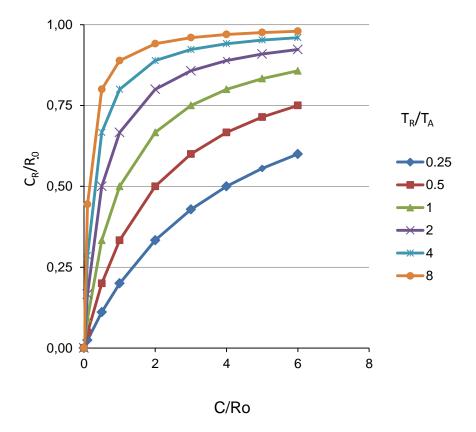
Dosis und Wirkung. Beiträge zur theoretischen Pharmakologie, Editio Cantor GmbH, Freiburg im Breisgau A toxicant molecule will react with a specific receptor in a bimolecular reaction

 Effects are determined by the relative concentration of bound receptors C_R / R_o

$$C_{R} / R_{0} = \underline{T_{R} C} \\ T_{A} R_{0}$$

• The determining variables are

the relative concentration of the toxicant at the site of action **C / R_o** and

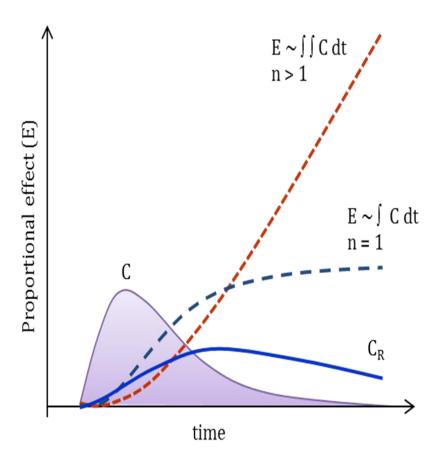

the quotient of the time constant for dissociation and the time constant for association T_R / T_A

- C concentration of toxicant at target site
- R_o initial concentration of receptor
- C_R concentration of bound receptors
- **T**_A time constant for association
- T_R time constant for dissociation

The Druckrey-Küpfmüller Theorem

Druckrey, H. & Küpfmüller, K. (1949). Dosis und Wirkung. Beiträge zur theoretischen Pharmakologie, Editio Cantor GmbH, Freiburg im Breisgau

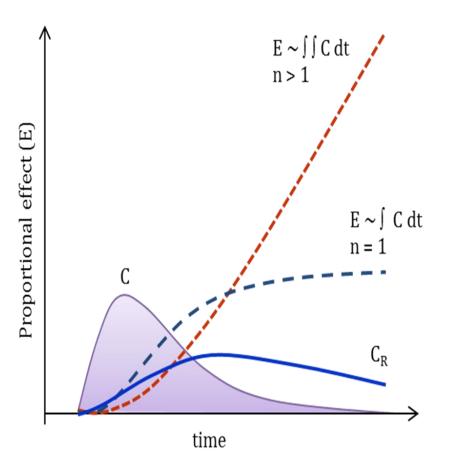
- In steady state, the relationship between relative concentration of bound receptors C_R /R₀ and relative toxicant concentration C/R₀ is a hyperbole
- The value of the time constant for dissociation T_R relative to the value of the time constant for association T_A is a crucial determinant of toxicity: the higher the ratio, the higher the toxicity



The Druckrey-Küpfmüller Theorem: Concentration-Dependent Effects

Druckrey, H. & Küpfmüller, K. (1949).

Dosis und Wirkung. Beiträge zur theoretischen Pharmakologie, Editio Cantor GmbH, Freiburg im Breisgau


- If both time constants (T_R and T_A) are low, i.e. when both association and dissociation are fast processes, equilibrium between C and receptor binding (and effect) will be established quickly but the toxic effect will also regress quickly.
- The time course of the effect will be the same as the time course of the concentration at the site of action C and the maximum effect will occur when the concentration at the site of action C is at its maximum.
- When both association and dissociation are fast processes, the effects will be strictly concentration-dependent.

The Druckrey-Küpfmüller Theorem: Cumulative Effects

Druckrey, H. & Küpfmüller, K. (1949). Dosis und Wirkung. Beiträge zur theoretischen Pharmakologie, Editio Cantor GmbH, Freiburg im Breisgau

- If the time constant for dissociation T_R is high, i.e. when receptor binding is only slowly reversible, the time to maximum effect will be delayed, and the (toxic) effect will also be slowly reversible.
- The higher is T_R, the longer is the time to maximum effect. Upon repeated exposure in quick succession there will be cumulative effects.
- The equilibrium between C and receptor binding (and effect) will be established very slowly
- When dissociation is a slow process, toxicity becomes a process that takes place in time. There will be a latency period up to a defined effect

The Druckrey-Küpfmüller Theorem: Irreversible Effects

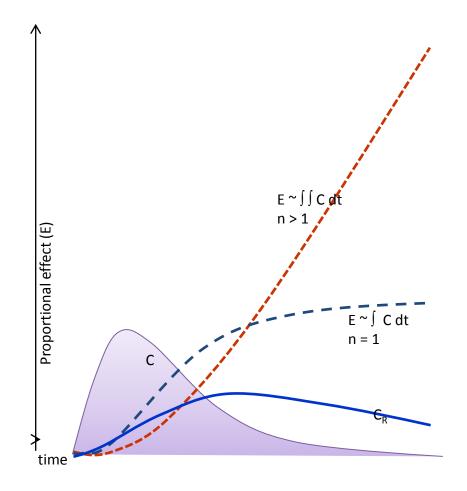
Druckrey, H. & Küpfmüller, K. (1949).

Dosis und Wirkung. Beiträge zur theoretischen Pharmakologie, Editio Cantor GmbH, Freiburg im Breisgau Tennekes, H.A. (2010) Toxicology 276, 1–4.

- If receptor binding happens to be virtually irreversible, the concentration of bound receptors C_R would be proportional to the integral of the concentration of the toxicant at the site of action C over time:
 - C_R ~∫ C dt

(1)

- If the subsequent effect would happen to be irreversible as well (e.g. cancer), the effect E would be proportional to the integral of the concentration of bound receptors C_R over time:
 - E ~∫C_R dt

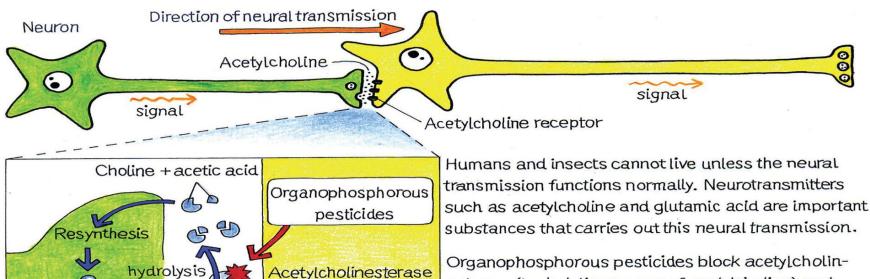

(2)

(3)

• So, in cases of irreversible receptor binding and an irreversible effect, the effect E would be proportional to the double integral of the toxicant concentration at the site of action C over time, as the combination of eq. (1) and (2) shows:

E ~ ∫ ∫ C dt

• When receptor binding and the effect are irreversible processes, exposure time will massively reinforce the effect, as seen with genotoxic carcinogens and neonicotinoids



Abbink (Bayer)'s Fitting Description of The Mode of Action of Neonicotinoids: "Virtually Irreversible Blockage Of Postsynaptic Nicotinic Acetylcholine Receptors"

Abbink, J. (1991) Pflanzenschutz-Nachrichten Bayer, Serial ID-ISSN 0340-1723C.

Neonicotinoid / Organophosphorous pesticides disrupt the neural transmission

Neural transmission mechanism through acetylcholine

Acetylcholine

receptor

Neonicotinoid

pesticides

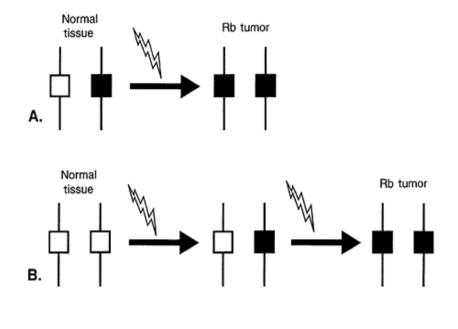
signal

Acetylcholine

Acetylcholine

Release

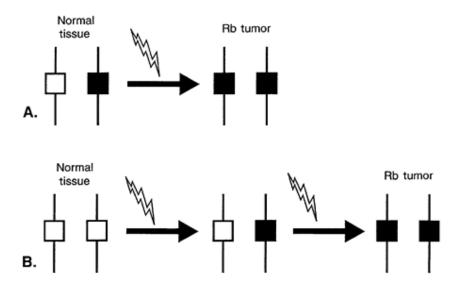
signal


esterase(hydrolytic enzyme of acetylcholine) and make the neural transmission stay on. It has the same effect as dangerous toxic nerve gas such as the Sarin.

Neonicotinoids bind with acetylcholine receptors, and become "false-neurotransmitters", where neural transmission switch will turn on even if there is no acetylcholine present.

The Druckrey-Küpfmüller Equation C x T50 ⁿ = constant, with n ≥ 1 A Safe Dose Can Not Be Defined For Genotoxic Carcinogens

Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma Proc Natl Acad Sci U S A. 68(4):820-3


- "one hit" could cause a mutation and eventually result in cancer The retinoblastoma (Rb) protein is a tumor suppressor protein that is dysfunctional in many types of cancer
- Mutated Rb can be inherited. The mutated gene is recessive
- Should a cell sustain only one mutation in the other Rb gene all pRb proteins in that cell would be ineffective

Risk Assessment of Genotoxic Carcinogens

EPA, 2005. Guidelines for Carcinogen Risk Assessment, EPA/630/P-03/001F, pp. 1–166

For genotoxic carcinogens it is ۲ now commonly accepted to apply the regulatory default based on the assumption that if "one hit" could cause a mutation and eventually result in cancer, then any exposure level could be associated with a finite cancer probability. With this in mind, the U.S. EPA evaluates carcinogens using a low-dose, linear model (EPA, 2005).

The Risk Of Imidacloprid For Honey Bees Is Underestimated

Suchail S, Guez D, Belzunces LP, 2001. Environ. Toxicol. Chem. 20: 2482-2486 Bonmatin JM et al., 2007. Environmental fate and ecological effects of pesticides. Pp. 827-834 Mullin CA et al, 2010. PloS One 5, e9754

• Druckrey-Küpfmüller equation

Ln T50 (hrs) = 5.11 – 0.22 Ln C (µg. L-1 or kg-1)

or

```
C x T50<sup>4.5</sup> = constant
```

• The concentrations of imidacloprid detected in nectar or pollen cause lethal effects in honey bees within a week

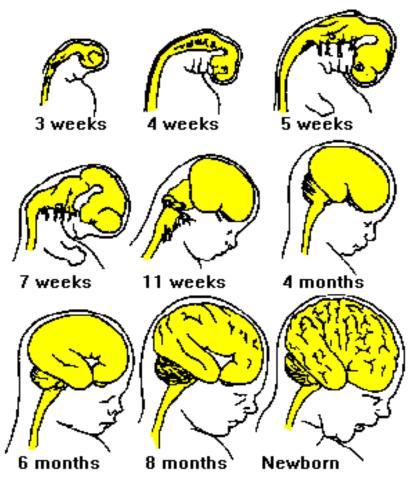
		2028
Food Source	Imidacloprid Content C (µg/kg or ppb)	Expected Latent Period (T50) (Days)
Nectar	1	6,9
	3	5,4
Pollen	0,7	7,5
	10	4,2

Current Toxicological Risk Assessment Can Lead To Serious Underestimates Of Actual Risk Neonicotinoids Are A Case In Point

Tennekes HA, Sánchez-Bayo F (2011) J Environment Analytic Toxicol S4:001. doi:10.4172/2161-0525.S4-001

- The traditional approach to toxicity testing is to consider dose (concentration)-effect relationships at arbitrarily fixed exposure durations which are supposed to reflect 'acute' or 'chronic' time scales.
- This approach measures the proportion of all exposed individuals responding by the end of different exposure times.
- Toxicological databases established in this way are collections of endpoint values obtained at fixed times of exposure. As such these values cannot be linked to make predictions for the wide range of exposures encountered by humans or in the environment.

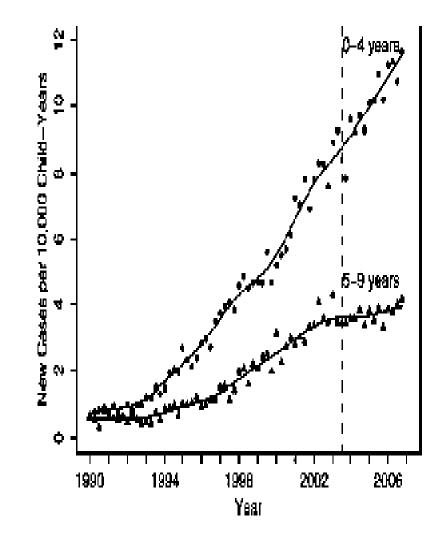
- An increasing number of researchers are using a variant of the traditional toxicity testing protocol which includes time to event (TTE) methods.
- This TTE approach measures the times to respond for all individuals, and provides information on the acquired doses as well as the exposure times needed for a toxic compound to produce any level of effect on the organisms tested.
- Consequently, extrapolations and predictions of toxic effects for any combination of concentration and time are now made possible.



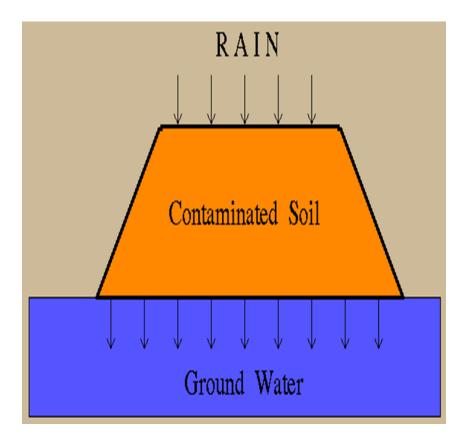
Nicotine Is A Neuroteratogen

Nicotine Alters The Developmental Trajectory Of The Brain

Eppolito AK et al. (2010) Neurotoxicology and Teratology 32 : 336–345 Dwyer JB et al. (2009) Pharmacol Ther. 122 : 125–139 Kimura-Kuroda J et al. (2012) PLoS ONE 7(2): e32432. doi:10.1371/journal.pone.0032432


- Nicotinic acetylcholine receptors (nAChRs) regulate critical aspects of brain maturation during the prenatal, early postnatal, and adolescent periods
- Nicotine disrupts the normal developmental influences of acetylcholine
- Neonicotinoids as well as nicotine directly act on mammalian nAChRs and, therefore, may have various adverse effects on the human health, especially on the developing brain.

Nicotine Causes Many Adverse Effects On The Normal Development Of A Child

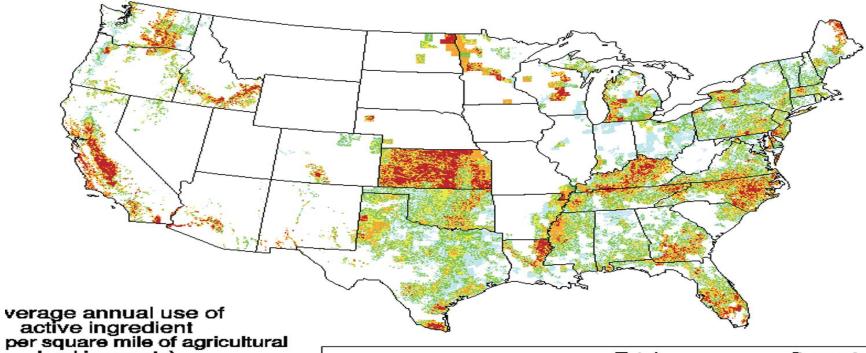

Kimura-Kuroda J et al. (2012) PLoS ONE 7(2): e32432. doi:10.1371/journal.pone.0032432

- Perinatal exposure to nicotine is a known risk factor for sudden infant death syndrome, low-birth-weight infants, attention deficit/hyperactivity disorder (ADHD), autism
- The Graph on the Right →: The rise of autism in California since the introduction of the neonicotinoid insecticides in the early 1990s


Neonicotinoids May Be Washed Out Of The Soil Into Waterways and Groundwater

 Not only are neonicotinoids water soluble and mobile in soil, they are also quite persistent in soil and water.

The Widely Used Neonicotinoid Insecticide Imidacloprid Has Caused Major Contamination Of Dutch Surface Water Since 2004


Red dots (right hand side) : Maximal Permissible Risk Level (MRL) Exceeded At Least Five Times In 2005, MRL Exceeded 25,000 Times at Noordwijkerhout (Flower Bulb Cultivation)

Imidacloprid

Estimated Annual Agricultural Use In The US In 2002

US Geological Survey National Water-Quality (NAWQA) Program

land in county)

no estimated use 0.001 to 0.004 0.005 to 0.015 0.016 to 0.053 0.054 to 0.202

>= 0.203

Cropspounds appliednational ussorghum9535526.36potatoes5933616.40tobacco4339211.99lettuce355739.83cotton181475.02grapes170934.72tomatoes152114.20citrus fruit132953.68apples112683.11pecans100012.76		Total	Percent	
potatoes5933616.40tobacco4339211.99lettuce355739.83cotton181475.02grapes170934.72tomatoes152114.20citrus fruit132953.68apples112683.11	Crops	pounds applied	national us	
tobacco4339211.99lettuce355739.83cotton181475.02grapes170934.72tomatoes152114.20citrus fruit132953.68apples112683.11	sorghum	95355	26.36	
lettuce 35573 9.83 cotton 18147 5.02 grapes 17093 4.72 tomatoes 15211 4.20 citrus fruit 13295 3.68 apples 11268 3.11	potatoes	59336	16.40	
cotton181475.02grapes170934.72tomatoes152114.20citrus fruit132953.68apples112683.11	tobacco	43392	11.99	
grapes170934.72tomatoes152114.20citrus fruit132953.68apples112683.11	lettuce	35573	9.83	
tomatoes 15211 4.20 citrus fruit 13295 3.68 apples 11268 3.11	cotton	18147	5.02	
citrus fruit 13295 3.68 apples 11268 3.11	grapes	17093	4.72	
apples 11268 3.11	tomatoes	15211	4.20	
	citrus fruit	13295	3.68	
pecans 10001 2.76	apples	11268	3.11	
	pecans	10001	2.76	

Imidacloprid Contaminates Surface Waters in Agricultural Regions of California

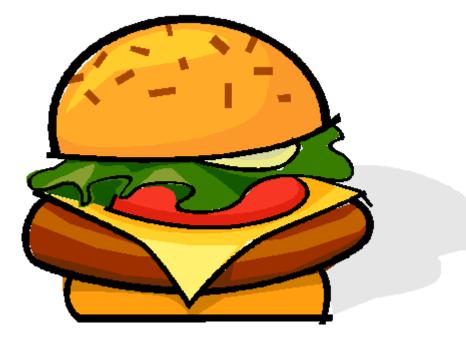
K Starner and KS Goh (2012) Bulletin of Environmental Contamination and Toxicology DOI: 10.1007/s00128-011-0515-5

- 75 surface water samples from three agricultural regions of California were collected and analyzed for contamination with imidacloprid
- Imidacloprid was detected in 67 samples (89%);
- Concentrations exceeded the U.S. Environmental Protection Agency's (EPA) chronic invertebrate Aquatic Life Benchmark of 1.05 µg/L (micrograms per liter) in 14 samples (19%).

Neonicotinoids Are Diffusing Through The Environment

 If Imidacloprid leaches from soil, the compound is diffusing through the environment, killing or debilitating non-target insects and possibly other arthropods, and by doing so progressively reducing invertebrate prey for higher organisms

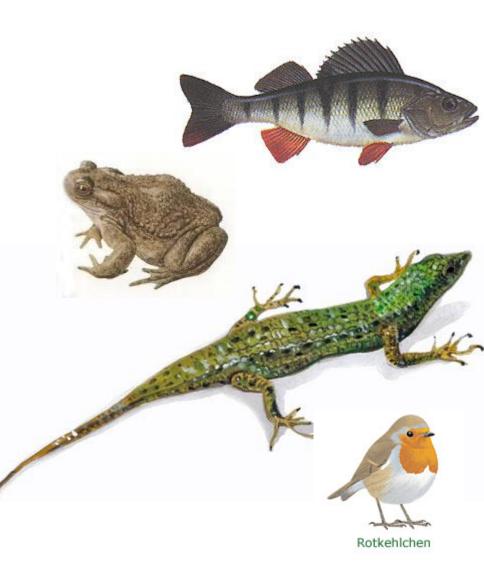
One Of The Most Obvious Services Insects Render, Albeit Unknowingly, Is Pollination


- Because plants for the most part can't move around, most rely on animal partners to bring males and females together for mating
- Insects provide that service (in the form of pollen transport) for a remarkable number of plants, particularly species that have become important to human economies and lifestyles.
- About one-third of the Western diet results directly from the pollination activities of insects.

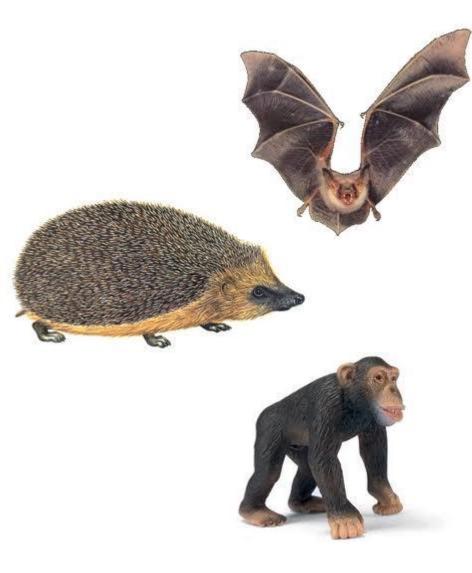
From Big Mac to McBun

May Berenbaum (Entomologist, University of Illinois) NZZ Folio 07/01 - Theme: Käfer und Co

 A McDonald's Big Mac burger in an insect-free world would have no meat, no lettuce, no cheese, no pickle, no onion, and no ketchup; basically, it would be a McBun.

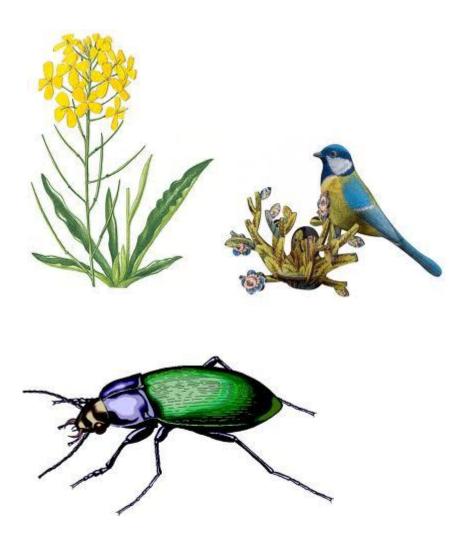

Our Fiber Needs Are Met In Large Part As A Result Of Insect Activity

- The cotton plant is insect pollinated
- Wool and leather come for the most part from sheep and cattle that have eaten insect-pollinated legumes in their diet.
- Silk, of course, is a natural fiber produced directly by an *insect Bombyx mori*, the Japanese silkworm

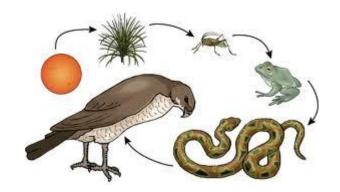

Most Vertebrates Rely Heavily On Insects In Their Diet

- Approximately 40 to 90% of the diet of **freshwater fish** consists of insects
- Among the amphibians, frogs, toads, and salamanders depend on insects; about 75% of the diet of the common toad is made up of insects
- Among the reptiles, insects are the food of choice for lizards, chameleons, green glass snakes, and horned toads.
- About one-third of the diet of game birds and songbirds are insects and their relatives

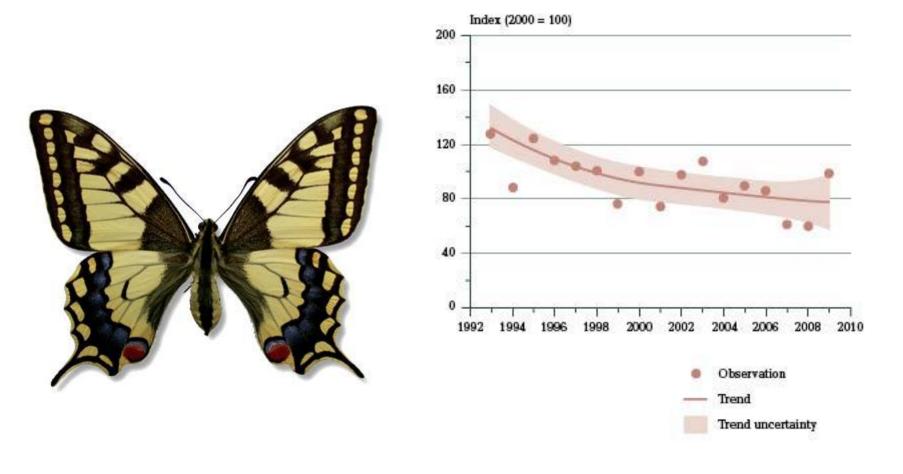
Most Orders Of Mammals Contain Insect-Eating Species


- spiny anteaters, duck-billed platypuses, opossums, cuscuses, caenolestid rat opossums, bandicoots, marsupial moles, hedgehogs, moles, tenrecs, solenodons, shrews, most bats, anteaters, armadillos, pangolins, some mice, and raccoons all consume insects on a regular basis.
- Even among the primates, our closest relatives, insect-eating is the norm; lemurs, aye-ayes, lorises, tarsiers, marmosets, and several of the great apes are to various degrees entomophagous.
- Both gorillas and chimpanzees fashion sticks into tools to help them extract termites and ants from their nests.

Insecticides Have Negative Effects On Biodiversity

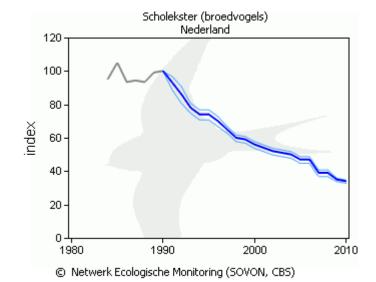

Geiger F et al (2010) Basic and Applied Ecology

- In a recent Europe-wide study in eight West and East European countries negative effects of agricultural intensification were observed on wild plant, carabid and bird species diversity.
- Of the 13 components of intensification measured, use of insecticides and fungicides had consistent negative effects on biodiversity



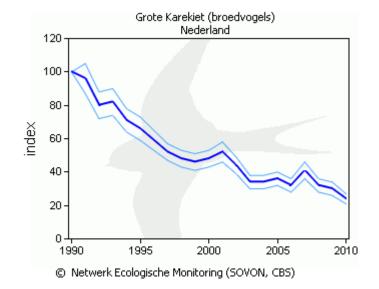
Are Neonicotinoids Breaking Food Chains ?

- The relationship may exist because of crucial (and catastrophic) disadvantages of the neonicotinoid insecticides: the damage to the central nervous system of insects is virtually irreversible and cumulative
- They leach into groundwater and contaminate surface water and persist in soil and water, chronically exposing aquatic and terrestrial organisms to these insecticides.
- Neonicotinoids may be decimating invertebrate prey for higher organisms

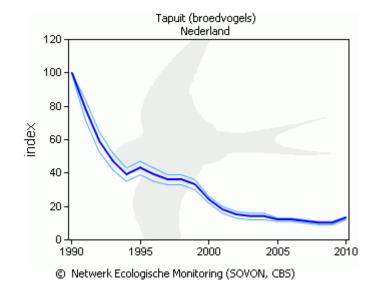


The Number Of Butterflies In The Netherlands Is Presently At The Lowest Point Ever Recorded

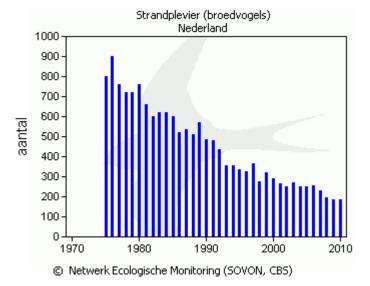
The Decline of Grassland Birds In The Netherlands Oystercatcher



 Sharp decline observed in Germany as well

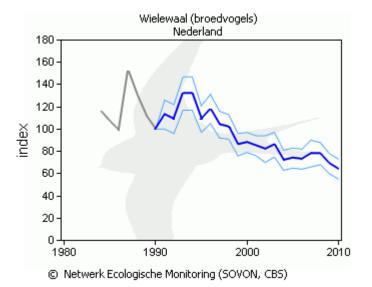

The Decline of Marsh Birds In The Netherlands Great Reed Warbler

The Decline of Heath Land Birds In The Netherlands Northern Wheatear

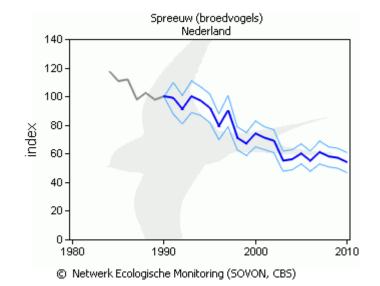


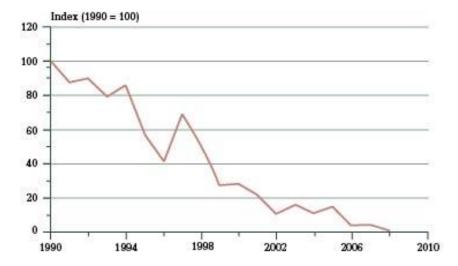
• On the brink of extinction in Germany

The Decline of Coast Birds In The Netherlands Kentish Plover

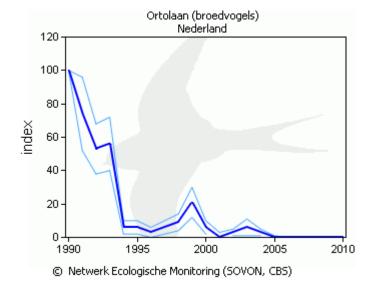


• On the brink of extinction in Germany


The Decline of Woodland Birds In The Netherlands Golden-Oriole


The Decline of Settlement Birds In The Netherlands Starling

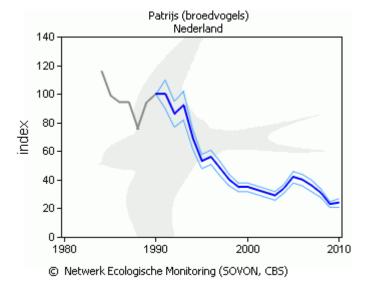
The Decline of Farmland Birds In The Netherlands Corn Bunting



Source: NEM (SOVON, CBS) CBS/nov09/1389 www.compendiumvoordeleefomeeving.nl

• Threathened in Germany

The Decline of Farmland Birds In The Netherlands Ortolan Bunting



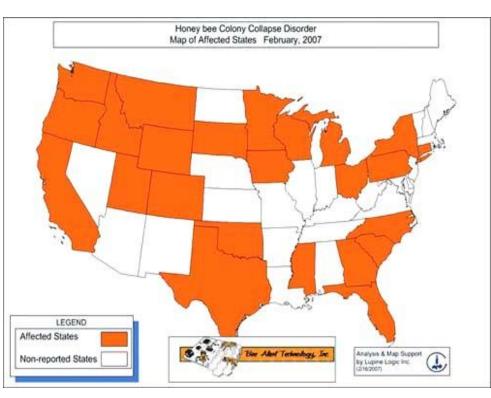
• Threathened In Germany

The Decline of Farmland Birds In The Netherlands Grey Partridge

Threathened in Germany

Immune Suppression by Neonicotinoid Insecticides At The Root Of Global Wildlife Declines

R Mason, H Tennekes, F Sánchez-Bayo, P Uhd Jepsen. Journal of Environmental Immunology and Toxicology 2012; X:XX-XX (in press)


- There is experimental evidence of immune suppression in bees and fish by neonicotinoids
- There have been outbreaks of infectious diseases in honey bees, bumble bees, fish, amphibians, bats and birds in the past two decades
- The disease outbreaks started in countries and regions where neonicotinoid insecticides were used for the first time, and later they spread to other countries

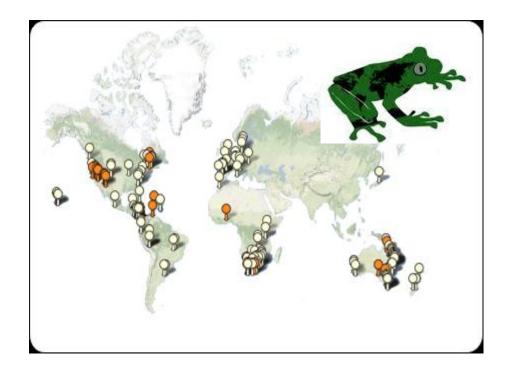
Honey Bee Declines in the US and Europe Are Linked To Infections

Cédric Alaux et al. Environ Microbiol. (2010) 12(3): 774–782 Pettis, JS et al. (2012) Naturwissenschaften DOI 10.1007/s00114-011-0881-1

- Neonicotinoids are weakening the insects' immune systems, and thus allowing infections to spread through a hive
- One thing common to bee colonies that go on to collapse is a greater variety and higher load of parasites and pathogens than other colonies

The Massive Bumble Bee Declines in the US and Europe Are Linked To Infections

Cameron, S.A. et al. (2011) Proc. Natl Acad. Sci. USA 108, 662-667


- Comparing results with museum records of bumble bees showed that the relative abundances of four species had declined historically by up to 96%. Geographical ranges had contracted by 23-87%, some within the past two decades.
- Those species that had declined had significantly higher infection levels of the pathogen *Nosema bombi*
- Exposure to neonicotinoid insecticides is likely to have occurred and may have weakened immune systems, such that they became more susceptible to pathogens

The Massive Declines in Amphibian Populations Are Linked To Infections The Chytrid Fungus Is Devastating Frog Populations

Symposium held at the Zoological Society of London: 20/21 November 2008. Halting the global declines in amphibians. Research & Practice

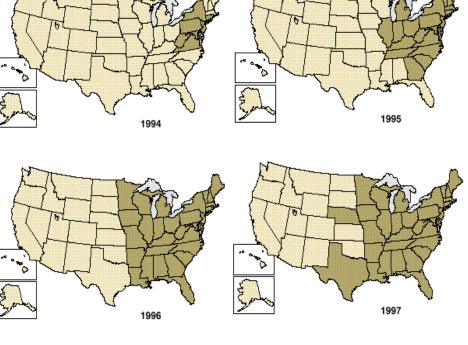
- Two species of once common frogs that had inhabited the thousands of lakes and ponds in California's Sierra Nevada are being wiped out by chytridiomycosis
- Exposure to small doses of neonicotinoid insecticides is likely to have occurred and may have weakened the amphibian immune systems, such that they became more susceptible to pathogens

The Massive Decline Of Bat Populations Is Linked To Infections

www.fws.gov/whitenosesyndrome

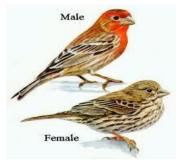
- A powdery white nose tip was pathognomonic of the disease and when the powder was cultured a fungus, *Geomyces destructans* was grown. This infected the skin and wing membranes of bats and was associated with unprecedented numbers of deaths
- It was first found in a cave in New York State in the 2005/6 winter and rapidly spread through the northeastern states
- the thousands of invertebrates consumed in their diet will inevitably have exposed bats to small cumulative doses of neonicotinoids

THE SPREAD OF WHITE-NOSE



Declines Due To Pathogens In Birds In the US

Fischer JR, Stallknecht DE, Luttrell P, et al. Emerg Infect Dis 1997; 3(1):69-72.


- A mycoplasmal conjunctivitis was first reported in wild house finches (*Carpodacus mexicanus*) in February 1994 in suburban Washington, DC.
- It was identified as *Mycoplasma gallisepticum*, a pathogen of poultry that had not previously been associated with wild songbirds.
- In the first three years it killed an estimated 225 million finches. There was a dramatic spread of disease to house finches in the mid-West and South East

Use "Go Back" on your Browser to return to previous page

EXPLANATION Spread of house finch conjunctivitis States where disease has been detected

Reported geographic spread of house finch inner eyelid inflammation (conjunctivitis) since the initial 1994 observation. (Data adapted from reports in the scientific literature and personal communications between the National Wildlife Health Center and other scientists.)

Declines Due To Pathogens In Birds In Europe

Robinson RA, Lawson B, Toms MP, et al. PLoS One 2010; 5(8):e12215. Lawson B, Malnick H, Pennycott TW, et al. Vet J 2011; 188(1):96-100 The second states

- In Europe epidemics caused by a variety of novel pathogens in wild birds began in early 2000
- Greenfinch (*Carduelis chloris*) numbers in Europe have been devastated by infections with *Trichomonas gallinae*, a protozoal organism which invades the bird's crop and mucosal lining of the beak. Deaths started in the UK around 2005
- At the same time, chaffinches (*Fringilla coelebs*) appeared in gardens with white, crusty growths on their legs and feet caused by a papilloma virus. The mortality is said to be about 20%, so the disease kills more slowly than with the Greenfinch *Trichomonas* infections

Declines Due To Pathogens In Birds In Europe

Friedrich-Loeffler-Institute. Federal Research Institute for Animal Health. News 16/09/2011

• In September 2011, mass deaths of Blackbirds (*Turdus merula*) were reported in the Rhine-Neckar area of Germany

- The Bernhard-Noct Institute for Tropical Diseases and the Friedrich-Loeffler Institute examined four birds and confirmed that it was the tropical Usutu Virus from Africa
- It was first seen in Austria in 2001, followed by reports from Italy, Hungary and Switzerland. In birds it first causes apathy, then signs of a central nervous system disorder, with unnatural movements of the head
- An estimated 300,000 blackbirds were killed by the disease

Summary

- Neonicotinoid insecticides act by causing virtually irreversible blockage of postsynaptic nicotinergic acetylcholine receptors (nAChRs) in the central nervous system of insects.
- The damage is cumulative, and with every exposure more receptors are blocked. In fact, there may not be a safe level of exposure.
- The nAChRs play roles in many cognitive processes and neonicotinoids account for worker bees neglecting to provide food for eggs and larvae, and for a breakdown of the bees' navigational abilities. Very small quantities of neonicotinoid insecticides are sufficient to cause collapse of bee colonies
- Food residues of neonicotinoids may adversely affect human health, especially the developing brain

- Neonicotinoid insecticides are persistent and mobile in soil, soluble in water and stable to breakdown by water at neutral pH, and - as a result of these properties the compounds may leach from soils.
- Since 2004 major contamination of Dutch surface water with imidacloprid has been detected by the Water Boards. Surface water contamination with imidacloprid has also been recorded in agricultural regions of California
- Consequently, high concentrations of imidacloprid are diffusing through the environment, killing or debilitating nontarget insects and other arthropods, decimating invertebrate prey for higher organisms.

A Disaster In The Making Neonicotinoids Break Food Chains

- Invertebrate-dependent bird species in the Netherlands have been declining on a massive scale in recent times, in all kinds of habitats (grasslands, marshes, heathlands, at the coast, woodlands, settlements, farmlands):
- Skylark, Yellow Wagtail, Oystercatcher, Black-tailed Godwit, Northern Lapwing, Common Redshank, Meadow Pipit, Willow Tit, Spotted Flycatcher, Wood Warbler, Pied Flycatcher, Wood Nuthatch, Willow Warbler, Marsh Tit, Grey-faced Woodpecker, Wryneck, Common Crossbill, Golden-Oriole, Northern House Martin, Barn Swallow, Common Swift, Starling, House Sparrow, Common Redstart, Great Reed Warbler, Bearded Tit and Spotted Crake

- There is experimental evidence of immune suppression by neonicotinoids, which may be at the root of global wildlife declines
- Ground and surface water contamination with persistent insecticides that cause irreversible and cumulative damage to aquatic and terrestrial (non-target) insects must lead to an environmental catastrophe.
- The data presented here show that an environmental catastrophe is actually taking place before our eyes, and that

IT MUST BE STOPPED

The Nature of Receptor Binding by Neonicotinoids Points to Cumulative Toxicity

Abbink, J. (1991) Pflanzenschutz-Nachrichten Bayer, Serial ID-ISSN 0340-1723C. Maus & R. Nauen (2011) Toxicology 280: 176-177 H.A. Tennekes (2011) Toxicology 280: 173–175

- Drs Christian Maus and Ralf Nauen of Bayer CropScience asserted that "similar to ACh, a neonicotinoid is binding to the nAChRs, and the binding of neonicotinoid insecticides is reversible.
- The synaptic action of ACh under normal physiological conditions is terminated by acetylcholinesterase, which hydrolyzes the transmitter.
- Neonicotinoids cannot be hydrolyzed by the enzyme, i.e., they persist at the binding sites leading to overstimulation of cholinergic synapses, resulting in hyperexcitation and paralysis of the insect"

- The time constant for dissociation T_R must be quite high (because the enzyme acetylcholinesterase cannot remove neonicotinoids from the binding sites)
- the time to maximum effect will be delayed
- As a result, there will be a latency period up to a defined effect, i.e., toxicity will be time-dependent.

Risk Assessment of Neonicotinoids

C. Maus & R. Nauen (2011) Toxicology 280: 176-177 H.A. Tennekes (2011) Toxicology 280: 173–175

- Drs Christian Maus and Ralf Nauen of Bayer CropScience asserted that "there is no substantiation for concerns that effects like described by the Druckrey–Küpfmüller equation might entail a higher chronic toxicity than currently determined".
- They refer to numerous studies providing evidence that "there is under realistic conditions no correlation between exposure of honey bees to imidacloprid-treated crops and increased colony mortality",

Neonicotinoids are lethal to honeybees at infinitesimal exposure concentrations:

Ln T50 (hrs) = 5.11 – 0.22 Ln C (μg. L-1 or kg-1) or C x T50 ^{4.5} = constant

Food Source	Imidacloprid Content (ppb)	Expected Lethal Effect (days)
Nectar	1	6.9